TY - JOUR
T1 - Interfacial Charge-Transfer Doping of Metal Halide Perovskites for High Performance Photovoltaics
AU - Habisreutinger, Severin
AU - Noel, Nakita
AU - Pellaroque, Alba
AU - Pulvierenti, Federico
AU - Wenger, Bernard
AU - Zhang, Fengyu
AU - Lin, Yen-Hung
AU - Leisen, Johannes
AU - Zhang, Yadong
AU - Barlow, Stephen
AU - Marder, Seth
AU - Kahn, Antoine
AU - Snaith, Henry
AU - Arnold, Craig
AU - Rand, Barry
PY - 2019
Y1 - 2019
N2 - The remarkable optoelectronic properties of metal halide perovskites have generated intense research interest over the last few years. The ability to control and manipulate the crystallisation and stoichiometry of perovskite thin-films has allowed for impressive strides in the development of highly efficient perovskite solar cells. However, being able to effectively modify the interfaces of metal halide perovskites, and to controllably p- or n-type dope the surfaces, may be key to further improvements in the efficiency and long-term stability of these devices. In this study, we use surface doping of the mixed-cation, mixed-halide perovskite FA0.85MA0.15Pb(I0.85Br0.15)3 (FA - formamidinium; MA - methylammonium) to improve the hole extraction from the perovskite solar cell. By treating the surface of the perovskite film with a strongly oxidizing molybdenum tris(dithiolene) complex, we achieve a shift in the work function that is indicative of p-doping, and a twofold increase in the total conductivity throughout the film. We probe the associated interfacial chemistry through photoelectron and solid-state nuclear magnetic resonance spectroscopies and confirm that charge-transfer occurs between the perovskite and dopant complex. The resulting p-doped interface constitutes a homojunction with increased hole-selectivity. With charge-selective layers, we show that this surface doping enhances the device performance of perovskite solar cells resulting in steady-state efficiencies approaching 21%. Finally, we demonstrate that a surface treatment with this dopant produces the same effect as the commonly employed additive 4-tert butylpyridine (tBP), allowing us to achieve 'tBP-free' devices with steady-state efficiencies of over 20%, and enhanced thermal stability as compared to devices processed using tBP. Our findings therefore demonstrate that molecular doping is a feasible route to tune and control the surface properties of metal halide perovskites.
AB - The remarkable optoelectronic properties of metal halide perovskites have generated intense research interest over the last few years. The ability to control and manipulate the crystallisation and stoichiometry of perovskite thin-films has allowed for impressive strides in the development of highly efficient perovskite solar cells. However, being able to effectively modify the interfaces of metal halide perovskites, and to controllably p- or n-type dope the surfaces, may be key to further improvements in the efficiency and long-term stability of these devices. In this study, we use surface doping of the mixed-cation, mixed-halide perovskite FA0.85MA0.15Pb(I0.85Br0.15)3 (FA - formamidinium; MA - methylammonium) to improve the hole extraction from the perovskite solar cell. By treating the surface of the perovskite film with a strongly oxidizing molybdenum tris(dithiolene) complex, we achieve a shift in the work function that is indicative of p-doping, and a twofold increase in the total conductivity throughout the film. We probe the associated interfacial chemistry through photoelectron and solid-state nuclear magnetic resonance spectroscopies and confirm that charge-transfer occurs between the perovskite and dopant complex. The resulting p-doped interface constitutes a homojunction with increased hole-selectivity. With charge-selective layers, we show that this surface doping enhances the device performance of perovskite solar cells resulting in steady-state efficiencies approaching 21%. Finally, we demonstrate that a surface treatment with this dopant produces the same effect as the commonly employed additive 4-tert butylpyridine (tBP), allowing us to achieve 'tBP-free' devices with steady-state efficiencies of over 20%, and enhanced thermal stability as compared to devices processed using tBP. Our findings therefore demonstrate that molecular doping is a feasible route to tune and control the surface properties of metal halide perovskites.
KW - carbon nanotubes
KW - interface modification
KW - p-doping
KW - perovskite solar cells
U2 - 10.1039/C9EE01773A
DO - 10.1039/C9EE01773A
M3 - Article
SN - 1754-5692
VL - 12
SP - 3063
EP - 3073
JO - Energy and Environmental Science
JF - Energy and Environmental Science
IS - 10
ER -