Abstract
With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 μm bondline thickness) was 3 to 5 W/(m·K) and the contact resistance was 5 to 10 mm2·K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m·K) and the contact resistance was 2 to 5 mm2·K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient ther mal management.
| Original language | American English |
|---|---|
| Pages | 1296-1307 |
| Number of pages | 12 |
| DOIs | |
| State | Published - 4 Sep 2014 |
| Event | 14th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2014 - Orlando, United States Duration: 27 May 2014 → 30 May 2014 |
Conference
| Conference | 14th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2014 |
|---|---|
| Country/Territory | United States |
| City | Orlando |
| Period | 27/05/14 → 30/05/14 |
Bibliographical note
See NREL/CP-5400-61106 for preprintNREL Publication Number
- NREL/CP-5400-63180
Keywords
- bulk thermal conductivity
- contact resistance
- phase-sensitive transient thremoreflectance
- Thermal interface materials
- thermophysical properties