Abstract
Background: Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass. Results: In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%. Conclusions: We conclude that this iron-accumulating strategy can be transferred from model plants and applied to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.
Original language | American English |
---|---|
Article number | 55 |
Number of pages | 15 |
Journal | Biotechnology for Biofuels |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - 2021 |
Bibliographical note
Publisher Copyright:© 2021, The Author(s).
NREL Publication Number
- NREL/JA-2700-79392
Keywords
- Ferritin
- High-throughput hot-water pretreatment
- Iron co-catalyst
- Perls’ Prussian blue staining
- Saccharification
- Sugar release
- Transgenic switchgrass