Abstract
In this paper, a mathematical relationship between temperature and solar irradiance is established in order to reduce the sample space and provide joint probabilistic forecasts. These forecasts can then be used for the purpose of stochastic optimization in power systems. A Volterra system type of model is derived to characterize the dependence of temperature on solar irradiance. A dataset from NOAA weather station in California is used to validate the fit of the model. Using the model, probabilistic forecasts of both temperature and irradiance are provided and the performance of the forecasting technique highlights the efficacy of the proposed approach. Results are indicative of the fact that the underlying correlation between temperature and irradiance is well captured and will therefore be useful to produce future scenarios of temperature and irradiance while approximating the underlying sample space appropriately.
Original language | American English |
---|---|
Pages | 3819-3823 |
Number of pages | 5 |
DOIs | |
State | Published - 10 Sep 2018 |
Event | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada Duration: 15 Apr 2018 → 20 Apr 2018 |
Conference
Conference | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 |
---|---|
Country/Territory | Canada |
City | Calgary |
Period | 15/04/18 → 20/04/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
NREL Publication Number
- NREL/CP-5D00-72688
Keywords
- Probabilistic forecasts
- Solar irradiance
- Stochastic optimization
- Temperature
- Volterra system