Abstract
This paper provides experimental results of a utility-scale (500 kW) solar PV inverter during simulated grid disturbances. This device was tested using simulations of system voltage during three different disturbances; simulated distribution and transmission faults, and voltage records that were collected during the Blue Cut Fire Event. The methods used for testing the three different scenarios of grid disturbances are detailed and the test setup is described. Additionally, the test results for each of the grid events are provided and an analysis of the test results is given. The test results show that the tested PV inverter's response to grid disturbances depends in part on the fault-induced phase shift and harmonic content of the system voltage. These factors can impact the inverters ability to accurately calculate system frequency and can cause erroneous tripping on miscalculated frequency. The information provided in this paper can inform utilities, manufacturers, developers, and system planners of the potential performance of solar PV inverters during grid events.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 21 Dec 2018 |
Event | 2018 IEEE Power and Energy Society General Meeting, PESGM 2018 - Portland, United States Duration: 5 Aug 2018 → 10 Aug 2018 |
Conference
Conference | 2018 IEEE Power and Energy Society General Meeting, PESGM 2018 |
---|---|
Country/Territory | United States |
City | Portland |
Period | 5/08/18 → 10/08/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
NREL Publication Number
- NREL/CP-5D00-70495
Keywords
- DER frequency ride-through
- Frequency ride-through test
- Utility-scale solar PV inverters