Abstract
Cyber attacks become emerging threats to every information-oriented energy management system. By violating the cyber systems, the hacker can disrupt the security and stability due to the strong coupling between the cyber and physical facilities. In this paper, one type of cyber attacks designated as the load altering attack is studied for the power system frequency control, and corresponding defense strategies are proposed to improve the frequency control performance. Considering the difficulty of the application of model-based controller into large-scale power systems, a novel model-free defense framework is for the first time presented. Under this framework, both active defense and passive defense strategies are designed. The former assumes that the defender has the initiative to learn different attack scenarios. Adaptive defense strategies are implemented using the online attack identification information and off-line trained strategy pool. The latter assumes that the defender passively tolerates various attack scenarios via the pre-trained off-line strategy. Both approaches prove to be effective through validation based on the IEEE benchmark systems. The proposed defense framework and defense strategies can be extended to other energy control systems to enhance their attack tolerance capability.
Original language | American English |
---|---|
Number of pages | 14 |
Journal | Applied Energy |
Volume | 280 |
DOIs | |
State | Published - 2020 |
NREL Publication Number
- NREL/JA-5D00-78274
Keywords
- defense strategy
- load altering attack
- load frequency control
- model-free control