Abstract
Robust contact schemes that boost stability and simplify the production process are needed for perovskite solar cells (PSCs). We codeposited perovskite and hole-selective contact while protecting the perovskite to enable deposition of SnOx/Ag without the use of a fullerene. The SnOx, prepared through atomic layer deposition, serves as a durable inorganic electron transport layer. Tailoring the oxygen vacancy defects in the SnOx layer led to power conversion efficiencies (PCEs) of >25%. Our devices exhibit superior stability over conventional p-i-n PSCs, successfully meeting several benchmark stability tests. They retained >95% PCE after 2000 hours of continuous operation at their maximum power point under simulated AM1.5 illumination at 65degrees C. Additionally, they boast a certified T97 lifetime exceeding 1000 hours.
Original language | American English |
---|---|
Pages (from-to) | 187-192 |
Number of pages | 6 |
Journal | Science |
Volume | 386 |
Issue number | 6718 |
DOIs | |
State | Published - 2024 |
NREL Publication Number
- NREL/JA-5K00-90231
Keywords
- c60
- c60-free
- perovskite
- solar