TY - JOUR
T1 - Low-Energy Chlorophyll States in the CP43 Antenna Protein Complex: Simulation of Various Optical Spectra. II
AU - Reppert, Mike
AU - Zazubovich, Valter
AU - Dang, Nhan C.
AU - Seibert, Michael
AU - Jankowiak, Ryszard
PY - 2008
Y1 - 2008
N2 - The CP43 protein complex of the core antenna of higher plant photosystem II (PSII) has two quasidegenerate "red" absorption states. It has been shown in the accompanying paper I (Dang, N. C., et al. J. Phys. Chem. B 2008, 112, 9921.) that the site distribution functions (SDFs) of red-states A and B are uncorrelated and the narrow holes are burned in subpopulations of chlorophylls (Chls) from states A and B that are the lowestenergy pigments in their particular CP43 complexes and cannot further transfer energy downhill. In this work, we present the results of a series of Monte Carlo simulations using the 3.0-Å structure of the PSII core complex from cyanobacteria (Loll, B., et al. Nature 2005, 303, 1040.) to model absorption, emission, persistent, and transient hole burned (HB) spectra. At the current structural resolution, we found calculated site energies (obtained from INDO/S calculations) to be only suggestive because their values are different for the two monomers of CP43 in the PS II dimer. As a result, to probe the excitonic structure, a simple fitting procedure was employed to optimize Chl site energies from various starting values corresponding to different A/B pigment combinations to provide simultaneously good fits to several types of optical spectra. It is demonstrated that the shape of the calculated absorption, emission, and transient/persistent hole-burned spectra is consistent with experimental data and our model for excitation energy transfer between two quasi-degenerate lowest-E states (A and B) with uncorrelated SDFs discussed in paper I. Calculations revealed that absorption changes observed near 670 nm in the non-line-narrowed persistent HB spectra (assigned to photoconversion involving Chi-protein hydrogen-bonding by Hughes (Biochemistry 2006, 45, 12345.) are most likely the result of nonphotochemical hole-burning (NPHB) accompanied by the redistribution of oscillator strength due to modified excitonic interactions. We argue that a unique redistribution of oscillator strength during the NPHB process helps to assign Chls contributing to the low-energy states. It is demonstrated that the 4.2 K asymmetric triplet-bottleneck (transient) hole is mostly contributed to by both A and B states, with the hole profile described by a subensemble of pigments, which are the lowest-energy pigments (Bs- and A s-type) in their complexes. The same lowest-energy Chls contribute to the observed fluorescence spectra. On the basis of our excitonic calculations, the best Chl candidates that contribute to the low-energy A and B states are ChI 44 and ChI 37, respectively.
AB - The CP43 protein complex of the core antenna of higher plant photosystem II (PSII) has two quasidegenerate "red" absorption states. It has been shown in the accompanying paper I (Dang, N. C., et al. J. Phys. Chem. B 2008, 112, 9921.) that the site distribution functions (SDFs) of red-states A and B are uncorrelated and the narrow holes are burned in subpopulations of chlorophylls (Chls) from states A and B that are the lowestenergy pigments in their particular CP43 complexes and cannot further transfer energy downhill. In this work, we present the results of a series of Monte Carlo simulations using the 3.0-Å structure of the PSII core complex from cyanobacteria (Loll, B., et al. Nature 2005, 303, 1040.) to model absorption, emission, persistent, and transient hole burned (HB) spectra. At the current structural resolution, we found calculated site energies (obtained from INDO/S calculations) to be only suggestive because their values are different for the two monomers of CP43 in the PS II dimer. As a result, to probe the excitonic structure, a simple fitting procedure was employed to optimize Chl site energies from various starting values corresponding to different A/B pigment combinations to provide simultaneously good fits to several types of optical spectra. It is demonstrated that the shape of the calculated absorption, emission, and transient/persistent hole-burned spectra is consistent with experimental data and our model for excitation energy transfer between two quasi-degenerate lowest-E states (A and B) with uncorrelated SDFs discussed in paper I. Calculations revealed that absorption changes observed near 670 nm in the non-line-narrowed persistent HB spectra (assigned to photoconversion involving Chi-protein hydrogen-bonding by Hughes (Biochemistry 2006, 45, 12345.) are most likely the result of nonphotochemical hole-burning (NPHB) accompanied by the redistribution of oscillator strength due to modified excitonic interactions. We argue that a unique redistribution of oscillator strength during the NPHB process helps to assign Chls contributing to the low-energy states. It is demonstrated that the 4.2 K asymmetric triplet-bottleneck (transient) hole is mostly contributed to by both A and B states, with the hole profile described by a subensemble of pigments, which are the lowest-energy pigments (Bs- and A s-type) in their complexes. The same lowest-energy Chls contribute to the observed fluorescence spectra. On the basis of our excitonic calculations, the best Chl candidates that contribute to the low-energy A and B states are ChI 44 and ChI 37, respectively.
KW - basic sciences
UR - http://www.scopus.com/inward/record.url?scp=50549104214&partnerID=8YFLogxK
U2 - 10.1021/jp8013749
DO - 10.1021/jp8013749
M3 - Article
AN - SCOPUS:50549104214
SN - 1520-6106
VL - 112
SP - 9934
EP - 9947
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 32
ER -