Abstract
The introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of an array of infrastructure elements, such as production, delivery, and dispensing, all associated with energy consumption and emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The MSM uses a federated simulation framework for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of "over-the-net" computation. While the MSM can address numerous hydrogen systems analysis aspects, of particular interest is the optimal deployment scenario. Depending on user-defined geographic location and hydrogen demand curve parameters, the cost-optimal succession of production/delivery/ dispensing pathways undergo significant changes (the most important of these being the transition between distributed and central H2 production with delivery). Some "tipping" (break-even) points are identified.
Original language | American English |
---|---|
Pages | 539-546 |
Number of pages | 8 |
DOIs | |
State | Published - 2011 |
Event | ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States Duration: 11 Nov 2011 → 17 Nov 2011 |
Conference
Conference | ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 |
---|---|
Country/Territory | United States |
City | Denver, CO |
Period | 11/11/11 → 17/11/11 |
NREL Publication Number
- NREL/CP-6A20-52316
Keywords
- energy carrier
- hydrogen
- light duty vehicles
- macro systems model (MSM)