Abstract
The discovery of two-dimensional van der Waals magnets has greatly expanded our ability to create and control nanoscale quantum phases. A unique capability emerges when a two-dimensional magnet is also a semiconductor that features tightly bound excitons with large oscillator strengths that fundamentally determine the optical response and are tunable with magnetic fields. Here we report a previously unidentified type of optical excitation-a magnetic surface exciton-enabled by the antiferromagnetic spin correlations that confine excitons to the surface of CrSBr. Magnetic surface excitons exhibit stronger Coulomb attraction, leading to a higher binding energy than excitons confined in bulk layers, and profoundly alter the optical response of few-layer crystals. Distinct magnetic confinement of surface and bulk excitons is established by layer- and temperature-dependent exciton reflection spectroscopy and corroborated by ab initio many-body perturbation theory calculations. By quenching interlayer excitonic interactions, the antiferromagnetic order of CrSBr strictly confines the bound electron-hole pairs within the same layer, regardless of the total number of layers. Our work unveils unique confined excitons in a layered antiferromagnet, highlighting magnetic interactions as a vital approach for nanoscale quantum confinement, from few layers to the bulk limit.
Original language | American English |
---|---|
Pages (from-to) | 391-398 |
Number of pages | 8 |
Journal | Nature Materials |
Volume | 24 |
DOIs | |
State | Published - 2025 |
NREL Publication Number
- NREL/JA-5K00-90452
Keywords
- scalability
- spin confinement
- surface and bulk excitons