Mapping the Pathways of Photo-Induced Ion Migration in Organic-Inorganic Hybrid Halide Perovskites: Article No. 1846

Taeyong Kim, Soyeon Park, Vasudevan Iyer, Basamat Shaheen, Usama Choudhry, Qi Jiang, Gage Eichman, Ryan Gnabasik, Kyle Kelley, Benjamin Lawrie, Kai Zhu, Bolin Liao

Research output: Contribution to journalArticlepeer-review

20 Scopus Citations

Abstract

Organic-inorganic hybrid perovskites exhibiting exceptional photovoltaic and optoelectronic properties are of fundamental and practical interest, owing to their tunability and low manufacturing cost. For practical applications, however, challenges such as material instability and the photocurrent hysteresis occurring in perovskite solar cells under light exposure need to be understood and addressed. While extensive investigations have suggested that ion migration is a plausible origin of these detrimental effects, detailed understanding of the ion migration pathways remains elusive. Here, we report the characterization of photo-induced ion migration in perovskites using in situ laser illumination inside a scanning electron microscope, coupled with secondary electron imaging, energy-dispersive X-ray spectroscopy and cathodoluminescence with varying primary electron energies. Using methylammonium lead iodide and formamidinium lead iodide as model systems, we observed photo-induced long-range migration of halide ions over hundreds of micrometers and elucidated the transport pathways of various ions both near the surface and inside the bulk of the samples, including a surprising finding of the vertical migration of lead ions. Our study provides insights into ion migration processes in perovskites that can aid perovskite material design and processing in future applications.
Original languageAmerican English
Number of pages9
JournalNature Communications
Volume14
DOIs
StatePublished - 2023

NREL Publication Number

  • NREL/JA-5900-85542

Keywords

  • cathodoluminescence
  • electron microscopy
  • energy dispersive X-ray spectroscopy
  • hybrid perovskites
  • ion migration

Fingerprint

Dive into the research topics of 'Mapping the Pathways of Photo-Induced Ion Migration in Organic-Inorganic Hybrid Halide Perovskites: Article No. 1846'. Together they form a unique fingerprint.

Cite this