Mechanistic Understanding of pH Effects on the Oxygen Evolution Reaction

Julie Fornaciari, Lien-Chun Weng, Shaun Alia, Cheng Zhan, Tuan Pham, Alexis Bell, Tadashi Ogitsu, Nemanja Danilovic, Adam Weber

Research output: Contribution to journalArticlepeer-review

52 Scopus Citations

Abstract

The oxygen-evolution reaction (OER) is pivotal in many energy-conversion technologies as it is an important counter reaction to others that convert stable chemicals to higher-value products using electrochemistry. The local microenvironment and pH for the anode OER can vary from acidic to neutral to alkaline depending on the system being explored, making definitive mechanistic insights difficult. In this paper, we couple experiments, first-principles calculations based on density functional theory, microkinetics, and transport modeling to explore the entire pH range of the OER. At low current densities, neutral pH values unexpectedly perform better than the acidic and alkaline conditions, and this trend is reversed at higher current densities (> 20 mA cm−2). Using multiscale modeling, this switch is rationalized by a change from a dual-reaction mechanism to a single rate-determining step. The model also shows how the alkaline reaction rates dominate in the middle to high pH range. Furthermore, we explore that the local pH for near-neutral conditions is much different (e.g., 2.4 at the reaction surface vs. 9 in the bulk) than the pH extremes, demonstrating the criticality that transport phenomena plays in kinetic activity.

Original languageAmerican English
Article number139810
Number of pages8
JournalElectrochimica Acta
Volume405
DOIs
StatePublished - 2022

Bibliographical note

Publisher Copyright:
© 2021

NREL Publication Number

  • NREL/JA-5900-81947

Keywords

  • Electrochemistry
  • Microkinetics
  • Oxygen evolution reaction

Fingerprint

Dive into the research topics of 'Mechanistic Understanding of pH Effects on the Oxygen Evolution Reaction'. Together they form a unique fingerprint.

Cite this