Abstract
Transient changes in the performance of thin-film modules with light exposure are a well-known and widely reported phenomenon. These changes are often the result of reversible metastabilities rather than irreversible changes. Here we consider how these metastable changes affect the temperature dependence of photovoltaic performance. We find that in CIGS modules exhibiting a metastable increase in performance with light exposure, the light exposure also induces an increase in the magnitude of the temperature coefficient. It is important to understand such changes when characterizing temperature coefficients and when analyzing the outdoor performance of newly installed modules.
Original language | American English |
---|---|
Pages | 337-340 |
Number of pages | 4 |
DOIs | |
State | Published - 15 Oct 2014 |
Event | 40th IEEE Photovoltaic Specialist Conference, PVSC 2014 - Denver, United States Duration: 8 Jun 2014 → 13 Jun 2014 |
Conference
Conference | 40th IEEE Photovoltaic Specialist Conference, PVSC 2014 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 8/06/14 → 13/06/14 |
Bibliographical note
See NREL/CP-5J00-61264 for preprintNREL Publication Number
- NREL/CP-5J00-63538
Keywords
- CIGS
- light-soak
- metastability
- photovoltaic
- temperature coefficient
- transient