Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization

Chris Deline, Joseph Del Cueto, David S. Albin, Steve Rummel

Research output: Contribution to journalArticlepeer-review

17 Scopus Citations

Abstract

The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film poly-crystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light soaked at 65°C; exposed in the dark under forward bias at 65°C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark-bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

Original languageAmerican English
Article number022001
Number of pages13
JournalJournal of Photonics for Energy
Volume2
Issue number1
DOIs
StatePublished - Jan 2012

NREL Publication Number

  • NREL/JA-5200-56275

Keywords

  • CdTe
  • Copper indium gallium dis-elenide
  • Metastability
  • Photovoltaic
  • Thin film
  • Transients

Fingerprint

Dive into the research topics of 'Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization'. Together they form a unique fingerprint.

Cite this