Methane Utilization in Methylomicrobium alcaliphilum 20ZR: A Systems Approach: Article No. 2512

Michael Guarnieri, Ilya Akberdin, Richard Hamilton, Nalini Desai, Danny Alexander, Marina Kalyuzhnaya, Merlin Thompson, Calvin Henard

Research output: Contribution to journalArticlepeer-review

75 Scopus Citations


Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20ZR an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20ZR. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.
Original languageAmerican English
Number of pages13
JournalScientific Reports
StatePublished - 2018

NREL Publication Number

  • NREL/JA-5100-70511


  • metabolic engineering
  • methane utilization
  • methylomicrobium alcaliphilum


Dive into the research topics of 'Methane Utilization in Methylomicrobium alcaliphilum 20ZR: A Systems Approach: Article No. 2512'. Together they form a unique fingerprint.

Cite this