Abstract
Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (Vb) to the device and taking the Vb-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potential measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n-i-p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance.
Original language | American English |
---|---|
Pages (from-to) | 952-957 |
Number of pages | 6 |
Journal | Ultramicroscopy |
Volume | 109 |
Issue number | 8 |
DOIs | |
State | Published - 2009 |
NREL Publication Number
- NREL/JA-520-43804
Keywords
- Atomic force microscopy
- Microscopic methods
- Specifically for solid interfaces and multilayers