Model Predictive Control for Integrated Control of Air-Conditioning and Mechanical Ventilation, Lighting and Shading Systems: Article No. 117112

Shiyu Yang, Man Wan, Bing Ng, Swapnil Dubey, Gregor Henze, Wanyu Chen, Krishnamoorthy Baskaran

Research output: Contribution to journalArticlepeer-review

52 Scopus Citations

Abstract

Modern buildings are increasingly automated and often equipped with multiple building services (e.g., air-conditioning and mechanical ventilation (ACMV), dynamic shading, dimmable lighting). These systems are conventionally controlled individually without considering their interactions, affecting the building's overall energy inefficiency and occupant comfort. A model predictive control (MPC) system that features a multi-objective MPC scheme to enable coordinated control of multiple building services for overall optimized energy efficiency, indoor thermal and visual comfort, as well as a hybrid model for predicting indoor visual comfort and lighting power is proposed. The MPC system was implemented in a test facility having two identical, side-by-side experimental cells to facilitate comparison with a building management system (BMS) employing conventional reactive feedback control. The MPC system coordinated the control of the ACMV, dynamic façade and automated dimmable lighting systems in one cell while the BMS controlled the building services in the other cell in a conventional manner. The MPC side achieved 15.1-20.7% electricity consumption reduction, as compared to the BMS side. Simultaneously, the MPC system improved indoor thermal comfort by maintaining the room within the comfortable range (-0.5 < predicted mean vote < 0.5) for 98.3% of the time, up from 91.8% of the time on the BMS side. Visual comfort, measured by indoor daylight glare probability (DGP) and horizontal illuminance level at work plane height, was maintained for the entire test period on the MPC side, improving from having visual comfort for 94.5% and 85.7% of the time, respectively, on the BMS side.
Original languageAmerican English
Number of pages20
JournalApplied Energy
Volume297
DOIs
StatePublished - 2021

NREL Publication Number

  • NREL/JA-5500-80256

Keywords

  • building automation and control
  • building services
  • coordinated control
  • human comfort
  • model predictive control

Fingerprint

Dive into the research topics of 'Model Predictive Control for Integrated Control of Air-Conditioning and Mechanical Ventilation, Lighting and Shading Systems: Article No. 117112'. Together they form a unique fingerprint.

Cite this