Model Quantification of the Effect of Coproducts and Refinery Co-Hydrotreating on the Economics and Greenhouse Gas Emissions of a Conceptual Biomass Catalytic Fast Pyrolysis Process

Abhijit Dutta, Hao Cai, Michael Talmadge, Calvin Mukarakate, Kristiina Iisa, Huamin Wang, Daniel Santosa, Longwen Ou, Damon Hartley, A. Wilson, Joshua Schaidle, Michael Griffin

Research output: Contribution to journalArticlepeer-review

7 Scopus Citations

Abstract

In this work we present model results for a scaled-up conceptual process informed by bench scale biomass catalytic fast pyrolysis (CFP) and hydrotreating experimental data. This process uses a Pt/TiO2 catalyst during CFP, which produces a partially deoxygenated organic biocrude intermediate that is then hydroprocessed to a hydrocarbon fuel blendstock; the catalyst also enables high yields of acetone and methyl-ethyl-ketone (MEK) coproducts. Two options for hydroprocessing were modeled: (A) co-hydrotreating at a petroleum refinery using hydrogen sourced from steam reforming of natural gas and (B) standalone hydrotreating at a biorefinery using hydrogen sourced from CFP off gases. The results revealed that Case A was economically advantageous with a modeled minimum fuel selling price (MFSP) of $2.83/GGE or gallon gasoline equivalent (in 2016 US dollars), while the additional cost of standalone hydrotreating facilities in Case B increased the MFSP to $3.13/GGE. Conversely, greenhouse gas (GHG) emissions were lower for Case B (3.9 g CO2e/MJ) compared to Case A (21.5 g CO2e/MJ) due to the use of biogenic (Case B) and fossil-derived (Case A) hydrogen. In a third option (Case C), the requirements for separation and purification of acetone and MEK were removed from the refinery co-processing scenario (Case A) to evaluate the impacts of this process simplification. Elimination of these coproducts increased the MFSP to $3.21/GGE and GHG emissions to 35 g CO2e/MJ. These comparisons based on our detailed conceptual models provide economic and sustainability guidance regarding processing choices for future biorefineries. While refinery coprocessing using existing equipment and the production of relatively valuable coproducts can benefit the economics, the hydrogen-source and biogenic coproducts can have significant impacts on the sustainability of the process, and feasibility to use CFP off-gases or other renewable sources for hydrogen production can help lower GHG emissions.

Original languageAmerican English
Article number138485
Number of pages10
JournalChemical Engineering Journal
Volume451
Issue numberPart 1
DOIs
StatePublished - 2023

Bibliographical note

Publisher Copyright:
© 2022 Elsevier B.V.

NREL Publication Number

  • NREL/JA-5100-82459

Keywords

  • Biomass catalytic fast pyrolysis
  • Biorefinery coproducts
  • Lifecycle analysis
  • Refinery coprocessing
  • Techno-economic analysis

Fingerprint

Dive into the research topics of 'Model Quantification of the Effect of Coproducts and Refinery Co-Hydrotreating on the Economics and Greenhouse Gas Emissions of a Conceptual Biomass Catalytic Fast Pyrolysis Process'. Together they form a unique fingerprint.

Cite this