Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions

Brian White, Michael Wagner, Ty Neises, Cory Stansbury, Ben Lindley

Research output: Contribution to journalArticlepeer-review

3 Scopus Citations


Solar power has innate issues with weather, grid demand and time of day, which can be mitigated through use of thermal energy storage for concentrating solar power (CSP). Nuclear reactors, including lead-cooled fast reactors (LFRs), can adjust power output according to demand; but with high fixed costs and low operating costs, there may not be sufficient economic incentive to make this worthwhile. We investigate potential synergies through coupling CSP and LFR together in a single supercritical CO2 Brayton cycle and/or using the same thermal energy storage. Combining these cycles allows for the LFR to thermally charge the salt storage in the CSP cycle during low-demand periods to be dispatched when grid demand increases. The LFR/CSP coupling into one cycle is modeled to find the preferred location of the LFR heat exchanger, CSP heat exchanger, sCO2-to-salt heat exchanger (C2S), turbines, and recuperators within the supercritical CO2 Brayton cycle. Three cycle configurations have been studied: two-cycle configuration, which uses CSP and LFR heat for dedicated turbocompressors, has the highest efficiencies but with less component synergies; a combined cycle with CSP and LFR heat sources in parallel is the simplest with the lowest efficiencies; and a combined cycle with separate high-temperature recuperators for both the CSP and LFR is a compromise between efficiency and component synergies. Additionally, four thermal energy storage charging techniques are studied: the turbine positioned before C2S, requiring a high LFR outlet temperature for viability; the turbine after the C2S, reducing turbine inlet temperature and therefore power; the turbine parallel to the C2S producing moderate efficiency; and a dedicated circulator loop. While all configurations have pros and cons, use of a single cycle offers component synergies with limited efficiency penalty. Using a turbine in parallel with the C2S heat exchanger is feasible but results in a low charging efficiency, while a dedicated circulator loop offers flexibility and near-perfect heat storage efficiency but increasing cost with additional cycle components.

Original languageAmerican English
Article number12428
Number of pages24
JournalSustainability (Switzerland)
Issue number22
StatePublished - 2021

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

NREL Publication Number

  • NREL/JA-5700-81655


  • Cogeneration
  • Complimentary cycle
  • Concentrating solar power (CSP)
  • Lead fast reactor (LFR)
  • Supercritical carbon dioxide Brayton cycle
  • Thermal energy storage (TES)


Dive into the research topics of 'Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions'. Together they form a unique fingerprint.

Cite this