Modeling the Performance and Faradaic Efficiency of Solid Oxide Electrolysis Cells Using Doped Barium Zirconate Perovskite Electrolytes

Jacob Wrubel, Jeffrey Gifford, Zhiwen Ma, Hanping Ding, Dong Ding, Tianli Zhu

Research output: Contribution to journalArticlepeer-review

19 Scopus Citations

Abstract

Y-doped BaZrO3 (BaZr1−xYxO3−δ, or “BZY”), a proton-conducting ceramic featuring high bulk conductivity and good chemical stability, is a promising electrolyte material for solid oxide electrolysis cells. Further doping with Ce and/or Yb (creating materials “BCZY” and “BCZYYb”) can improve conductivity and sintering properties, but at significant penalty to cells’ faradaic efficiency (FE). Studies have proposed that reduction of lattice Ce can occur in the hydrogen electrode, which consumes some hydrogen produced by the hydrogen evolution reaction, leading to decreased FE. Despite studies suggesting this phenomenon, the mechanism is largely unknown. We developed a multiphysics model to study the transport of multiple defect species and the performance of BZY, BCZY, and BCZYYb, capturing the tradeoff between enhanced performance at the cost of FE for BCZY and BCZYYb electrolytes compared to BZY. We also found that increasing the water content of the anode gas supply lowers the current output of the cell but results in better FE. The model, which uses several parameters previously unavailable in the literature, was validated to experiments varying temperature, steam water content, and electrolyte material, as well as two performance metrics (performance curves and FE). Results verify and explain observed trends, informing future work on Ce-doped BZY electrolytes.

Original languageAmerican English
Pages (from-to)11511-11522
Number of pages12
JournalInternational Journal of Hydrogen Energy
Volume46
Issue number21
DOIs
StatePublished - 23 Mar 2021

Bibliographical note

Publisher Copyright:
© 2021 Hydrogen Energy Publications LLC

NREL Publication Number

  • NREL/JA-5700-77623

Keywords

  • Barium zirconate
  • Cerium reduction
  • Defect transport
  • Faradaic efficiency
  • Hydrogen
  • Solid oxide electrolysis

Fingerprint

Dive into the research topics of 'Modeling the Performance and Faradaic Efficiency of Solid Oxide Electrolysis Cells Using Doped Barium Zirconate Perovskite Electrolytes'. Together they form a unique fingerprint.

Cite this