Abstract
Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.
Original language | American English |
---|---|
Number of pages | 5 |
State | Published - 2017 |
Event | 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC) - Washington, D.C. Duration: 25 Jun 2017 → 30 Jun 2017 |
Conference
Conference | 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC) |
---|---|
City | Washington, D.C. |
Period | 25/06/17 → 30/06/17 |
Bibliographical note
See NREL/CP-5900-74014 for paper as published in IEEE proceedingsNREL Publication Number
- NREL/CP-5J00-67774
Keywords
- modeling
- Sentaurus
- tandem solar cell
- TCAD
- three-terminal