Abstract
The morphology of the bulk heterojunction absorber layer in an organic photovoltaic (OPV) device has a profound effect on the electrical properties and efficiency of the device. Previous work has consistently demonstrated that the solubilizing side-chains of the donor material affect these properties and device performance in a non-trivial way. Here, using Time-Resolved Microwave Conductivity (TRMC), we show by direct measurements of carrier lifetimes that the choice of side chains can also make a substantial difference in photocarrier dynamics. We have previously demonstrated a correlation between peak photoconductance measured by TRMC and device efficiencies; here, we demonstrate that TRMC photocarrier dynamics have an important bearing on device performance in a case study of devices made from donor materials with linear vs. branched side-chains and with variable active layer thicknesses. We use Grazing-Incidence Wide Angle X-ray Scattering to elucidate the cause of the different carrier lifetimes as a function of different aggregation behavior in the polymers. Ultimately, the results help establish TRMC as a technique for screening OPV donor materials whose devices maintain performance in thick active layers (>250 nm) designed to improve light harvesting, film reproducibility, and ease of processing.
Original language | American English |
---|---|
Pages (from-to) | 57-65 |
Number of pages | 9 |
Journal | Organic Electronics |
Volume | 47 |
DOIs | |
State | Published - 1 Aug 2017 |
Bibliographical note
Publisher Copyright:© 2017
NREL Publication Number
- NREL/JA-5900-68309
Keywords
- Carrier lifetime
- Layer thickness
- Organic photovoltaics
- Time-resolved microwave conductivity
- X-ray diffraction