Abstract
Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200..deg..C in air and N2 respectively. Ag grids were inkjet-printed on Sisolar cells and fired through the silicon nitride AR layer at 850..deg..C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.
Original language | American English |
---|---|
Number of pages | 5 |
State | Published - 2006 |
Event | 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) - Waikoloa, Hawaii Duration: 7 May 2006 → 12 May 2006 |
Conference
Conference | 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) |
---|---|
City | Waikoloa, Hawaii |
Period | 7/05/06 → 12/05/06 |
NREL Publication Number
- NREL/CP-520-39902
Keywords
- inkjet printed contacts
- multi-layer
- printed circuit board (PCB)
- silicon
- solar cells