TY - GEN
T1 - Multiphase Reacting Flow Simulations and Optimization of Commercial-Scale Aerobic Bioreactors
AU - Sitaraman, Hariswaran
AU - Rahimi, Mohammad
AU - Lischeske, James
AU - Stickel, Jonathan
PY - 2019
Y1 - 2019
N2 - Aerobic bioreactors are widely used in the synthesis of value-added products in pharmaceutical and biotechnology industries, wherein microbial bioreactions aid in the conversion of sugars to macromolecules. These reactors are also being actively investigated as a cost-effective pathway for the production of low-value commodities such as biofuels and animal feed. Reactor scale-up is one of the important challenges when designing these systems. Gas and liquid phase transport, mass-transfer, and mixing physics at large length scales can significantly affect microbial conversion rates, particularly when the microbial reaction requires a narrow set of conditions. These phenomena are difficult to study in small-scale bench-top reactors that are typically well-mixed. Predictive computational fluid dynamics (CFD) based simulations can therefore aid in the design and optimization of these reactors. This work presents multiphase Euler-Euler CFD simulations of commercial-scale (~ 500 m3) aerobic bioreactors. Our mathematical model treats the gas and liquid as interpenetrating phases. This approach reduces the computational complexity of tracking individual gas bubbles that are several orders of magnitude smaller than reactor dimensions. We solve the Reynolds averaged Navier-Stokes (RANS) multiphase equations that account for phase and chemical species transport, interphase mass and momentum transfer and uses a phenomenological model for oxygen uptake by microbes. We use a customized solver derived from open-source CFD toolbox, OpenFOAM, to perform these simulations, which has been validated against small-scale reactors in our previous work. This work examines the performance of three different reactor designs, viz. bubble column reactor, airlift reactor with an internal draft tube, and a stirred-tank reactor with Rushton impellers. Reactor oxygen mass-transfer coefficient, gas hold-up, and oxygen distribution are critically analyzed among reactors, and sensitivity studies pertaining to gas flow rates and reactor geometry will be presented.
AB - Aerobic bioreactors are widely used in the synthesis of value-added products in pharmaceutical and biotechnology industries, wherein microbial bioreactions aid in the conversion of sugars to macromolecules. These reactors are also being actively investigated as a cost-effective pathway for the production of low-value commodities such as biofuels and animal feed. Reactor scale-up is one of the important challenges when designing these systems. Gas and liquid phase transport, mass-transfer, and mixing physics at large length scales can significantly affect microbial conversion rates, particularly when the microbial reaction requires a narrow set of conditions. These phenomena are difficult to study in small-scale bench-top reactors that are typically well-mixed. Predictive computational fluid dynamics (CFD) based simulations can therefore aid in the design and optimization of these reactors. This work presents multiphase Euler-Euler CFD simulations of commercial-scale (~ 500 m3) aerobic bioreactors. Our mathematical model treats the gas and liquid as interpenetrating phases. This approach reduces the computational complexity of tracking individual gas bubbles that are several orders of magnitude smaller than reactor dimensions. We solve the Reynolds averaged Navier-Stokes (RANS) multiphase equations that account for phase and chemical species transport, interphase mass and momentum transfer and uses a phenomenological model for oxygen uptake by microbes. We use a customized solver derived from open-source CFD toolbox, OpenFOAM, to perform these simulations, which has been validated against small-scale reactors in our previous work. This work examines the performance of three different reactor designs, viz. bubble column reactor, airlift reactor with an internal draft tube, and a stirred-tank reactor with Rushton impellers. Reactor oxygen mass-transfer coefficient, gas hold-up, and oxygen distribution are critically analyzed among reactors, and sensitivity studies pertaining to gas flow rates and reactor geometry will be presented.
KW - bioreactors
KW - computational fluid dynamics
KW - multiphase flow
KW - stir-tank reactors
M3 - Presentation
T3 - Presented at the 2019 AICHE Annual Meeting, 10-15 November 2019, Orlando, Florida
ER -