Abstract
Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by channeling the excess photon energy (energy greater than the bandgap) to produce multiple electron-hole pairs. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon couplingthat cools hot-excitons in bulk semiconductors. We have demonstrated that MEG in PbSe QDs is about two times as efficient at producing multiple electron-hole pairs than bulk PbSe. I will discuss our recent results investigating MEG in PbSe, PbS and PbSxSe1-x, which exhibits an interesting size-dependence of the MEG efficiency. Thin films of electronically coupled PbSe QDs have shown promise insimple photon-to-electron conversion architectures with power conversion efficiencies above 5%. We recently reported an enhancement in the photocurrent resulting from MEG in PbSe QD-based solar cells. We find that the external quantum efficiency (spectrally resolved ratio of collected charge carriers to incident photons) peaked at 114% in the best devices measured, with an internal quantumefficiency of 130%. These results demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells. We compare our results to transient absorption measurements and find reasonable agreement.
Original language | American English |
---|---|
State | Published - 2012 |
Event | American Chemical Society. 244th ACS National Meeting - Philadelphia, Pennsylvania Duration: 19 Aug 2012 → 23 Aug 2012 |
Conference
Conference | American Chemical Society. 244th ACS National Meeting |
---|---|
City | Philadelphia, Pennsylvania |
Period | 19/08/12 → 23/08/12 |
NREL Publication Number
- NREL/CP-5900-56365