Natural Convection in an Enclosure with Discrete Roughness Elements on a Vertical Heated Wall

    Research output: NRELTechnical Report

    Abstract

    Natural convection flow next to a heated wall with single and repeated, two-dimensional, rectangular roughness elements is studied numerically and experimentally. The objective is to determine how these roughness elements influence heat transfer rates from the wall. Each roughness element consists of a thermally conducting, horizontal cylinder of rectangular cross section attached to the heated,isothermal wall of an enclosure. The height of roughness is on the order of the boundary layer thickness. Dye flow visualization in water confirms the numerical prediction that the steady flow over these elements does not separate. Only at high Rayleigh numbers, when the boundary layer below the roughness is unsteady, is local instantaneous flow reversal observed. Although steady flow reversalsnear the wall are not predicted or observed, nearly stagnant regions are formed, particularly between closely spaced cylinders. The surface heat flux in these stagnant regions is relatively low, so the total heat transfer rate may be nearly the same as for a smooth wall in spite of the increased surface area.
    Original languageAmerican English
    Number of pages9
    DOIs
    StatePublished - 1986

    NREL Publication Number

    • NREL/TP-252-2812

    Keywords

    • building technologies
    • flux
    • heat transfer rate
    • walls

    Fingerprint

    Dive into the research topics of 'Natural Convection in an Enclosure with Discrete Roughness Elements on a Vertical Heated Wall'. Together they form a unique fingerprint.

    Cite this