NREL Pyrheliometer Comparisons: September 22-26, 2014 (NPC-2014)

Research output: NRELTechnical Report


Accurate measurements of direct normal (beam) solar irradiance from pyrheliometers are important for developing and deploying solar energy conversion systems, improving our understanding of the Earth's energy budget for climate change studies, and for other science and technology applications involving solar flux. Providing these measurements places many demands on the quality system used by theoperator of commercially available radiometers. Maintaining accurate radiometer calibrations that are traceable to an international standard is the first step in producing research-quality solar irradiance measurements. As with all measurement systems, absolute cavity radiometers and other types of pyrheliometers are subject to performance changes over time. NREL has developed and maintained aselect group of absolute cavity radiometers with direct calibration traceability to the World Radiometric Reference (WRR), and uses these reference instruments to calibrate pyrheliometers and pyranometers using the ISO 17025 accredited Broadband Outdoor Radiometer Calibration (BORCAL) process. National Renewable Energy Laboratory (NREL) pyrheliometer comparisons (NPCs) are held annually at theSolar Radiation Research Laboratory (SRRL) in Golden, Colorado. Open to all pyrheliometer owners and operators, each NPC provides an opportunity to determine the unique WRR transfer factor (WRR-TF) for each participating pyrheliometer. By adjusting all subsequent pyrheliometer measurements by the appropriate WRR-TF, the solar irradiance data are traceable to the WRR. NPC-2014 was held September22-26, 2014. Participants operated 36 absolute cavity radiometers and 22 conventional thermopile-based pyrheliometers to simultaneously measure clear-sky direct normal solar irradiance during this period, and this report documents the findings.BEopt(tm) whole-house building simulations. This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that thistechnology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flowperformance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.
Original languageAmerican English
Number of pages50
StatePublished - 2014

NREL Publication Number

  • NREL/TP-3B10-63050


  • absolute cavity radiometers
  • IS
  • NREL
  • pyrheliometer comparisons
  • traceability
  • WRR


Dive into the research topics of 'NREL Pyrheliometer Comparisons: September 22-26, 2014 (NPC-2014)'. Together they form a unique fingerprint.

Cite this