Abstract
In the OC5 and OC62 projects, the authors observed a persistent underprediction of the nonlinear, low-frequency responses of an offshore wind semisubmersible with many mid-fidelity engineering models, including the OpenFAST tool developed by the National Renewable Energy Laboratory. Both the low-frequency wave excitation in surge and pitch and the resulting resonance motions were severely underpredicted. In response, we developed several modifications to the OpenFAST model from the OC5/6 projects to improve the predictions of the low-frequency wave loads and responses. All modifications are in the modeling of the viscous drag forces. Efforts were made to provide physical justifications to the changes and to limit the number of additional parameters requiring tuning, so that the modified model can be applied to other floating wind systems. With the proposed modifications, the predictions of the low-frequency surge and pitch wave loads on a fixed floater and the resonance responses of a floating structure are both significantly improved with a single set of model coefficients, which leads to good agreement with the measurements from the OC6 wave-basin experimental campaign.
Original language | American English |
---|---|
Pages (from-to) | 282-301 |
Number of pages | 20 |
Journal | Renewable Energy |
Volume | 187 |
DOIs | |
State | Published - 2022 |
Bibliographical note
Publisher Copyright:© 2022 Elsevier Ltd
NREL Publication Number
- NREL/JA-5000-81554
Keywords
- Low frequency
- OC6
- Offshore wind
- OpenFAST
- Resonance
- Semisubmersible