Abstract
Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, mooring dynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration Continuation project, which operates under the International Energy Agency Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.
Original language | American English |
---|---|
Number of pages | 15 |
DOIs | |
State | Published - 2014 |
Event | ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2014 - San Francisco, United States Duration: 8 Jun 2014 → 13 Jun 2014 |
Conference
Conference | ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2014 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 8/06/14 → 13/06/14 |
Bibliographical note
See NREL/CP-5000-61154 for preprintNREL Publication Number
- NREL/CP-5000-63516