Abstract
We report the effect of the initial film hydrogen content (CH) on the crystallization kinetics, crystallite nucleation rate and grain growth rate when HWCVD and PECVD a-Si:H films are crystallized by annealing at 600..deg..C. For the HWCVD films, both the incubation time and crystallization time decrease, and the full width at half maximum (FWHM) of the XRD (111) peak decreases with decreasingfilm CH. However, other sources of XRD line broadening exist in such materials in addition to crystallite size, including the density of crystallite defects. To address these issues, TEM measurements have also been performed on a-Si:H films deposited directly onto TEM grids.
Original language | American English |
---|---|
Number of pages | 6 |
State | Published - 2006 |
Event | 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) - Waikoloa, Hawaii Duration: 7 May 2006 → 12 May 2006 |
Conference
Conference | 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) |
---|---|
City | Waikoloa, Hawaii |
Period | 7/05/06 → 12/05/06 |
NREL Publication Number
- NREL/CP-520-39901
Keywords
- crystallite nucleation rate
- crystallization kinetics
- film hydrogen content
- full width at half maximum (FWHM)
- grain growth rate
- PV
- thin films