Optically Induced Metastability in Cu(In,Ga)Se2

S. A. Jensen, A. Kanevce, L. M. Mansfield, S. Glynn, S. Lany, D. Kuciauskas

Research output: Contribution to journalArticlepeer-review

18 Scopus Citations

Abstract

Cu(In,Ga)Se2 (CIGS) is presently the most efficient thin-film photovoltaic technology with efficiencies exceeding 22%. An important factor impacting the efficiency is metastability, where material changes occur over timescales of up to weeks during light exposure. A previously proposed (V Se -V Cu ) divacancy model presents a widely accepted explanation. We present experimental evidence for the optically induced metastability transition and expand the divacancy model with first-principles calculations. Using photoluminescence excitation spectroscopy, we identify a sub-bandgap optical transition that severely deteriorates the carrier lifetime. This is in accordance with the expanded divacancy model, which predicts that states below the conduction band are responsible for the metastability change. We determine the density-capture cross-section product of the induced lifetime-limiting states and evaluate their impact on device performance. The experimental and theoretical findings presented can allow assessment of metastability characteristics of leading thin-film photovoltaic technologies.

Original languageAmerican English
Article numberArticle No. 13788
Number of pages7
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - 1 Dec 2017

Bibliographical note

Publisher Copyright:
© 2017 The Author(s).

NREL Publication Number

  • NREL/JA-5900-67677

Keywords

  • efficiency
  • metastability
  • photovoltaics
  • thin films

Fingerprint

Dive into the research topics of 'Optically Induced Metastability in Cu(In,Ga)Se2'. Together they form a unique fingerprint.

Cite this