Abstract
We used cathodoluminescence (CL) (spectrum-per-pixel) imaging on beveled CdTe solar cell sections to investigate the opto-electronic properties of these devices from the TCO to the back contact. We used a nano-scale CL probe to resolve luminescence from grain boundary (GB) and grain interior (GI) locations near the CdS/CdTe interface where the grains are very small. As-deposited, CdCl2-treated, Cu-treated, and (CdCl2+Cu)-treated cells were analyzed. Color-coded CL spectrum imaging maps on bevels illustrate the distribution of the T=6 K luminescence transitions through the depth of devices with unprecedented spatial resolution. The CL at the GBs and GIs is shown to vary significantly from the front to the back of devices and is a sensitive function of processing. Supporting D-SIMS depth profile, TRPL lifetime, and C-V measurements are used to link the CL data to the J-V performance of devices.
Original language | American English |
---|---|
Number of pages | 4 |
DOIs | |
State | Published - 14 Dec 2015 |
Event | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 - New Orleans, United States Duration: 14 Jun 2015 → 19 Jun 2015 |
Conference
Conference | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 14/06/15 → 19/06/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
NREL Publication Number
- NREL/CP-5K00-63562
Keywords
- cathodoluminescence
- CdTe solar cells
- grain boundaries
- opto-electronic properties