Oriented Assembled TiO2 Hierarchical Nanowire Arrays with Fast Electron Transport Properties

Kai Zhu, Xia Sheng, Dongqing He, Jie Yang, Xinjian Feng

Research output: Contribution to journalArticlepeer-review

132 Scopus Citations

Abstract

Developing high surface area nanostructured electrodes with rapid charge transport is essential for artificial photosynthesis, solar cells, photocatalysis, and energy storage devices. Substantial research efforts have been recently focused on building one-dimensional (1D) nanoblocks with fast charge transport into three-dimensional (3D) hierarchical architectures. However, except for the enlargement in surface area, there is little experimental evidence of fast electron transport in these 3D nanostructure-based solar cells. In this communication, we report single-crystal-like 3D TiO 2 branched nanowire arrays consisting of 1D branch epitaxially grown from the primary trunk. These 3D branched nanoarrays not only demonstrate 71% enlargement in large surface area (compared with 1D nanowire arrays) but also exhibit fast charge transport property (comparable to that in 1D single crystal nanoarrays), leading to 52% improvement in solar conversion efficiency. The orientated 3D assembly strategy reported here can be extended to assemble other metal oxides with one or multiple components and thus represents a critical avenue toward high-performance optoelectronics.

Original languageAmerican English
Pages (from-to)1848-1852
Number of pages5
JournalNano Letters
Volume14
Issue number4
DOIs
StatePublished - 9 Apr 2014

NREL Publication Number

  • NREL/JA-5900-60395

Keywords

  • charge transport
  • nanowire
  • semiconductor
  • solar cells
  • Three dimensional

Fingerprint

Dive into the research topics of 'Oriented Assembled TiO2 Hierarchical Nanowire Arrays with Fast Electron Transport Properties'. Together they form a unique fingerprint.

Cite this