Oxynitride Thin Film Barriers for PV Packaging

Research output: Contribution to conferencePaper

Abstract

Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimushazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification.Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performanceare presented.
Original languageAmerican English
Number of pages5
StatePublished - 2005
Event2005 DOE Solar Energy Technologies Program Review Meeting - Denver, Colorado
Duration: 7 Nov 200510 Nov 2005

Conference

Conference2005 DOE Solar Energy Technologies Program Review Meeting
CityDenver, Colorado
Period7/11/0510/11/05

Bibliographical note

Presented at the 2005 DOE Solar Energy Technologies Program Review Meeting held November 7-10, 2005 in Denver, Colorado. Also included in the proceedings available on CD-ROM (DOE/GO-102006-2245; NREL/CD-520-38557)

NREL Publication Number

  • NREL/CP-520-38959

Keywords

  • NREL
  • photovoltaics (PV)
  • PV
  • silicon oxynitride
  • solar
  • thin films

Fingerprint

Dive into the research topics of 'Oxynitride Thin Film Barriers for PV Packaging'. Together they form a unique fingerprint.

Cite this