Performance Characterization and Remedy of Experimental CuInGaSe2 Mini-Modules

F. J. Pern, F. Yan, L. Mansfield, S. Glynn, M. Rekow, R. Murison

Research output: Contribution to conferencePaperpeer-review

4 Scopus Citations

Abstract

We employed current-voltage (I-V), quantum efficiency (QE), photoluminescence (PL), electroluminescence (EL), lock-in thermography (LIT), and (electrochemical) impedance spectroscopy (ECIS) to complementarily characterize the performance and remedy for two pairs of experimental CuInGaSe 2 (CIGS) mini-modules. One pair had the three scribe-lines (P1/P2/P3) done by a single pulse-programmable laser, and the other had the P2/P3 lines by mechanical scribe. Localized QE measurements for each cell strip on all four mini-modules showed non-uniform distributions that correlated well with the presence of performance-degrading strips or spots revealed by PL, EL, and LIT imaging. Performance of the all-laser-scribed mini-modules improved significantly by adding a thicker Al-doped ZnO layer and reworking the P3 line. The efficiency on one of the all-laser-scribed mini-modules increased notably from 7.80% to 8.56% after the performance-degrading spots on the side regions along the cell array were isolated by manual scribes.

Original languageAmerican English
Pages2792-2797
Number of pages6
DOIs
StatePublished - 2011
Event37th IEEE Photovoltaic Specialists Conference, PVSC 2011 - Seattle, WA, United States
Duration: 19 Jun 201124 Jun 2011

Conference

Conference37th IEEE Photovoltaic Specialists Conference, PVSC 2011
Country/TerritoryUnited States
CitySeattle, WA
Period19/06/1124/06/11

Bibliographical note

See NREL/CP-5200-51812 for preprint

NREL Publication Number

  • NREL/CP-5200-55753

Fingerprint

Dive into the research topics of 'Performance Characterization and Remedy of Experimental CuInGaSe2 Mini-Modules'. Together they form a unique fingerprint.

Cite this