Abstract
In this paper, we present performance simulations and techno-economic analysis of a modular dispatchable solar power tower. Using a heliostat field and power block three orders of magnitude smaller than conventional solar power towers, our unique configuration locates thermal storage and a power block directly on a tower receiver. To make the system dispatchable, a valved thermosyphon controls heat flow from a latent heat thermal storage tank to a Stirling engine. The modular design results in minimal balance of system costs and enables high deployment rates with a rapid realization of economies of scale. In this new analysis, we combine performance simulations with techno-economic analysis to evaluate levelized cost of electricity, and find that the system has potential for cost-competitiveness with natural gas peaking plants and alternative dispatchable renewables.
Original language | American English |
---|---|
Pages (from-to) | 143-152 |
Number of pages | 10 |
Journal | Applied Energy |
Volume | 217 |
DOIs | |
State | Published - 2018 |
Bibliographical note
Publisher Copyright:© 2018 Elsevier Ltd
NREL Publication Number
- NREL/JA-5500-71221
Keywords
- Concentrated solar power
- Latent heat storage
- System modeling
- Techno-economic modeling
- Thermodynamic modeling