Abstract
In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 μm × 190 μm. PL images of large-grain (5 to 50 μm) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.
Original language | American English |
---|---|
Number of pages | 4 |
DOIs | |
State | Published - 14 Dec 2015 |
Event | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 - New Orleans, United States Duration: 14 Jun 2015 → 19 Jun 2015 |
Conference
Conference | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 14/06/15 → 19/06/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
NREL Publication Number
- NREL/CP-5K00-63620
Keywords
- cadmium compounds
- charge carrier lifetime
- grain boundaries
- imaging
- photoluminescence
- photovoltaic cells
- tellurium