Abstract
Thin CuGa/In films with varied compositions were deposited by co-evaporation and then selenized in situ with evaporated selenium. The selenized Cu(In, Ga)Se2 absorbers were used to fabricate 390 solar cells. Cu/(Ga+In) and Ga/(Ga+In) (Cu/III and Ga/III) were independently varied, and photovoltaic performance was optimal at Cu/III of 77-92% for all Ga/III compositions studied (Ga/III ∼ 30, 50, and 70%). The best absorbers at each Ga/III composition were characterized with time-resolved photoluminescence, scanning electron microscopy, and secondary ion mass spectrometry, and devices were studied with temperature-dependent current density-voltage, light and electrical biased quantum efficiency, and capacitance-voltage. The best cells with Ga/III ∼ 30, 50, and 70% had efficiencies of 14.5, 14.4, and 12.2% and maximum power temperature coefficients of -0.496, -0.452, and -0.413%/°C, respectively. This resulted in the Ga/III ∼ 50% champion having the highest efficiency at temperatures greater than 40°C, making it the optimal composition for practical purposes. This optimum is understood as a result of the absorber's band gap grading - where minimum band gap dominates short-circuit current density, maximum space charge region band gap dominates open-circuit voltage, and average absorber band gap dominates maximum power temperature coefficient.
Original language | American English |
---|---|
Pages | 2236-2241 |
Number of pages | 6 |
DOIs | |
State | Published - 18 Nov 2016 |
Event | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States Duration: 5 Jun 2016 → 10 Jun 2016 |
Conference
Conference | 43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 |
---|---|
Country/Territory | United States |
City | Portland |
Period | 5/06/16 → 10/06/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
NREL Publication Number
- NREL/CP-5K00-67960
Keywords
- chalcopyrite
- CIGS
- Cu(In, Ga)Se
- graded band gap
- selenization
- temperature coefficient