Abstract
The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a small fraction of known inorganic compounds, impeding a comprehensive perspective on the effects of temperature and composition on materials stability and synthesizability. Here, we use the SISSO (sure independence screening and sparsifying operator) approach to identify a simple and accurate descriptor to predict G for stoichiometric inorganic compounds with ~50 meV atom−1 (~1 kcal mol−1) resolution, and with minimal computational cost, for temperatures ranging from 300–1800 K. We then apply this descriptor to ~30,000 known materials curated from the Inorganic Crystal Structure Database (ICSD). Using the resulting predicted thermochemical data, we generate thousands of temperature-dependent phase diagrams to provide insights into the effects of temperature and composition on materials synthesizability and stability and to establish the temperature-dependent scale of metastability for inorganic compounds.
Original language | American English |
---|---|
Article number | 4168 |
Number of pages | 10 |
Journal | Nature Communications |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2018 |
Bibliographical note
Publisher Copyright:© 2018, The Author(s).
NREL Publication Number
- NREL/JA-5K00-72642
Keywords
- Gibbs energy
- materials chemistry
- statistics
- theory and computation