TY - JOUR
T1 - Physics-Driven Convolutional Autoencoder Approach for CFD Data Compressions
T2 - arXiv:2210.09262 [physics.flu-dyn]
AU - Olmo, Alberto
AU - Zamzam, Ahmed
AU - Glaws, Andrew
AU - King, Ryan
PY - 2022
Y1 - 2022
N2 - With the growing size and complexity of turbulent flow models, data compression approaches are of the utmost importance to analyze, visualize, or restart the simulations. Recently, in-situ autoencoder-based compression approaches have been proposed and shown to be effective at producing reduced representations of turbulent flow data. However, these approaches focus solely on training the model using point-wise sample reconstruction losses that do not take advantage of the physical properties of turbulent flows. In this paper, we show that training autoencoders with additional physics-informed regularizations, e.g., enforcing incompressibility and preserving enstrophy, improves the compression model in three ways: (i) the compressed data better conform to known physics for homogeneous isotropic turbulence without negatively impacting point-wise reconstruction quality, (ii) inspection of the gradients of the trained model uncovers changes to the learned compression mapping that can facilitate the use of explainability techniques, and (iii) as a performance byproduct, training losses are shown to converge up to 12x faster than the baseline model.
AB - With the growing size and complexity of turbulent flow models, data compression approaches are of the utmost importance to analyze, visualize, or restart the simulations. Recently, in-situ autoencoder-based compression approaches have been proposed and shown to be effective at producing reduced representations of turbulent flow data. However, these approaches focus solely on training the model using point-wise sample reconstruction losses that do not take advantage of the physical properties of turbulent flows. In this paper, we show that training autoencoders with additional physics-informed regularizations, e.g., enforcing incompressibility and preserving enstrophy, improves the compression model in three ways: (i) the compressed data better conform to known physics for homogeneous isotropic turbulence without negatively impacting point-wise reconstruction quality, (ii) inspection of the gradients of the trained model uncovers changes to the learned compression mapping that can facilitate the use of explainability techniques, and (iii) as a performance byproduct, training losses are shown to converge up to 12x faster than the baseline model.
KW - autoencoders
KW - turbulent flow
U2 - 10.48550/arXiv.2210.09262
DO - 10.48550/arXiv.2210.09262
M3 - Article
SN - 2331-8422
JO - ArXiv.org
JF - ArXiv.org
ER -