Abstract
Silicon anodes for lithium-ion batteries (LIBs) have the potential for higher energy density compared to conventionally used graphite-based LIB anodes. However, silicon anodes exhibit poor cycle and calendar lifetimes due to mechanical instabilities and high chemical and electrochemical reactivity with the carbonate-based electrolytes that are typically used in LIBs. In this work, we synthesize a pitch carbon-coated silicon nanoparticle composite active material for LIB anodes that exhibits reduced chemical reactivity with carbonate-based electrolytes compared to an uncoated silicon anode. Silicon primary particle sizes less than 10 nm diameter minimize micro-scale mechanical degradation of the anode composite, while conformal coatings of pitch carbon minimize the parasitic reactions between the silicon and the electrolyte. When matched with a high voltage NMC622 (LiNi0.6Mn0.2Co0.2O2) cathode, the pitch carbon-coated silicon anode retains approximately 75% of its initial capacity at the end of 1000 cycles. Increasing the areal loading of the pitch carbon-coated silicon anodes to realize energy density improvements over graphite anodes results in severe mechanical degradation on the electrode level, highlighting a remaining challenge to be addressed in future work.
Original language | American English |
---|---|
Number of pages | 8 |
Journal | Batteries and Supercaps |
Volume | 6 |
Issue number | 9 |
DOIs | |
State | Published - 2023 |
NREL Publication Number
- NREL/JA-5700-85299
Keywords
- carbonate electrolytes
- full-cells
- lithium-ion batteries
- pitch carbon
- silicon anodes