Polyhydroxyalkanoates in Emerging Recycling Technologies for a Circular Materials Economy

Gloria Rosetto, John McGeehan, Katrina Knauer, Brandon Knott, Hyunjin Moon, Julia Curley, Taylor Uekert, Ryan Clarke

Research output: Contribution to journalArticlepeer-review

Abstract

Circular polymer systems, specifically polyesters operating through chemical and biological technologies, are approaching a critical moment of industrial adoption and scale-up feasibility. At the same time, polyhydroxyalkanoate (PHA) production, scale-up, and resulting material development is converging toward commodity applications. The current PHA end-of-life philosophy, however, focalizes leveraging inherent biodegradability to circumvent plastic waste accumulation. If indeed a substantial replacement of incumbent single-use plastics with PHA alternatives is to be met in commercial manufacture, we emphasize the importance of linking PHA development with feasible polymer recycling technologies. In other words, a PHA materials economy is significantly more carbon- and cost-favorable when efficient mechanical (reprocessing), chemical (deconstruction, depolymerization), or biological (enzymatic) recycling is prioritized over biodegradation or composting. In this perspective, we discuss strategies for PHA recyclable-by-design principles, guidable by developing machine learning tools, as well as material compatibility with closed-loop recycling technologies. Additionally, we posit compelling life-cycle assessment incentives for adopting polymer reclamation over competing pathways. Ultimately, we hope this narrative further inspires the alignment between PHA design with growing calls for a circular material economy.
Original languageAmerican English
JournalMaterials Advances
DOIs
StatePublished - 2024

NREL Publication Number

  • NREL/JA-2800-89819

Keywords

  • circular polymer system
  • olyhydroxyalkanoate (PHA) production
  • polymer recycling technologie

Fingerprint

Dive into the research topics of 'Polyhydroxyalkanoates in Emerging Recycling Technologies for a Circular Materials Economy'. Together they form a unique fingerprint.

Cite this