Polymer Based Nanocomposites for Solar Energy Conversion

    Research output: Contribution to conferencePaper

    Abstract

    Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solarspectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting differentchemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materialsand composites.
    Original languageAmerican English
    Number of pages5
    StatePublished - 2005
    Event2004 DOE Solar Energy Technologies Program Review Meeting - Denver, Colorado
    Duration: 25 Oct 200428 Oct 2004

    Conference

    Conference2004 DOE Solar Energy Technologies Program Review Meeting
    CityDenver, Colorado
    Period25/10/0428/10/04

    Bibliographical note

    Presented at the 2004 DOE Solar Energy Technologies Program Review Meeting, 25-28 October 2004, Denver, Colorado. Also included in the proceedings available on CD-ROM (DOE/GO-102005-2067; NREL/CD-520-37140)

    NREL Publication Number

    • NREL/CP-520-37042

    Keywords

    • bandgap
    • devices
    • organic photovoltaics (OPV)
    • polymer based nanocomposites
    • PV
    • semiconductor
    • solar cells
    • solar power conversion

    Fingerprint

    Dive into the research topics of 'Polymer Based Nanocomposites for Solar Energy Conversion'. Together they form a unique fingerprint.

    Cite this