Abstract
Traditional testing methods fall short in evaluating interactions between multiple smart inverters providing advanced grid support functions due to the fact that such interactions largely depend on their placements on the electric distribution systems with impedances between them. Even though significant concerns have been raised by the utilities on the effects of such interactions, little effort has been made to evaluate them. In this paper, power hardware-in-the-loop (PHIL) based testing was utilized to evaluate autonomous volt-var operations of multiple smart photovoltaic (PV) inverters connected to a simple distribution feeder model. The results provided in this paper show that depending on volt-var control (VVC) parameters and grid parameters, interaction between inverters and between the inverter and the grid is possible in some extreme cases with very high VVC slopes, fast response times and large VVC response delays.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 9 Dec 2016 |
Event | 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT) - Minneapolis, Minnesota Duration: 6 Sep 2016 → 9 Sep 2016 |
Conference
Conference | 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT) |
---|---|
City | Minneapolis, Minnesota |
Period | 6/09/16 → 9/09/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
NREL Publication Number
- NREL/CP-5D00-66013
Keywords
- inverters
- Photovoltaic
- power hardware-in-the-loop
- volt-var control