Abstract
The aim of this paper is to maximize the power-to-load ratio for asymmetric wave energy converters undergoing heave motion. Linear hydrodynamic theory is used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the control focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for “The Berkeley Wedge” in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.
Original language | American English |
---|---|
Pages (from-to) | 1208-1225 |
Number of pages | 18 |
Journal | Renewable Energy |
Volume | 131 |
DOIs | |
State | Published - Feb 2019 |
Bibliographical note
Publisher Copyright:© 2017
NREL Publication Number
- NREL/JA-5000-68167
Keywords
- Asymmetric heave wave energy converter
- Nonideal PTO efficiency
- Power absorption control
- Structural load mitigation
- “Berkeley Wedge”