Predictive Models of Li-ion Battery Lifetime: NREL (National Renewable Energy Laboratory)

Kandler Smith, Eric Wood, Shriram Santhanagopalan, Gi-Heon Kim, Ying Shi, Ahmad Pesaran, Gi-Heon Kim

Research output: NRELPresentation


Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.
Original languageAmerican English
Number of pages30
StatePublished - 2014

Publication series

NamePresented at IEEE Conference on Reliability Science for Advanced Materials and Devices, 7-9 September 2014, Golden, Colorado

NREL Publication Number

  • NREL/PR-5400-62813


  • battery
  • battery degradation
  • battery life
  • Li-ion
  • lithium ion
  • multi-dimensional model


Dive into the research topics of 'Predictive Models of Li-ion Battery Lifetime: NREL (National Renewable Energy Laboratory)'. Together they form a unique fingerprint.

Cite this