Abstract
NREL and Corning Incorporated have collaborated on a project to investigate the effect of increasing CdTe deposition temperature on device performance. CdTe deposition temperatures are generally limited by the thermal properties of the glass superstrate. Soda-lime glass is frequently used in commercial production of CdTe, but the low strain point (515°C) requires deposition temperatures of 550°C or below. While the CdTe industry has enjoyed great success with material grown at these relatively low temperatures, there may be significant benefits to higher deposition temperatures enabled by a high strain point glass. To demonstrate the efficiency benefits of a CdTe cell fabricated at higher deposition temperatures, it is necessary to re-optimize the device fabrication process steps for devices made with CdTe films at each deposition temperature. Using Corning, Inc.'s new engineered high-strain-point glass superstrate, we developed a fabrication process optimized for CdTe films deposited at 550°and 600°C. Here, we report details of the fabrication processes that resulted in an absolute efficiency gain of 1.2% for devices fabricated with 600°C CdTe deposition temperature versus 550°C.
Original language | American English |
---|---|
Pages | 3220-3224 |
Number of pages | 5 |
DOIs | |
State | Published - 2012 |
Event | 38th IEEE Photovoltaic Specialists Conference, PVSC 2012 - Austin, TX, United States Duration: 3 Jun 2012 → 8 Jun 2012 |
Conference
Conference | 38th IEEE Photovoltaic Specialists Conference, PVSC 2012 |
---|---|
Country/Territory | United States |
City | Austin, TX |
Period | 3/06/12 → 8/06/12 |
NREL Publication Number
- NREL/CP-5200-54100
Keywords
- CdTe
- deposition temperature
- device performance
- engineered glass
- high strain-point