Abstract
Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons toadditional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas)reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.
Original language | American English |
---|---|
State | Published - 2012 |
Event | American Chemical Society. 244th ACS National Meeting - Philadelphia, Pennsylvania Duration: 19 Aug 2012 → 23 Aug 2012 |
Conference
Conference | American Chemical Society. 244th ACS National Meeting |
---|---|
City | Philadelphia, Pennsylvania |
Period | 19/08/12 → 23/08/12 |
NREL Publication Number
- NREL/CP-5100-56373