Recent Developments in Catalyst-Related PEM Fuel Cell Durability

Rodney Borup, Ahmet Kusoglu, Kenneth Neyerlin, Rangachary Mukundan, Rajesh Ahluwalia, David Cullen, Karren More, Adam Weber, Deborah Myers

Research output: Contribution to journalArticlepeer-review

235 Scopus Citations

Abstract

Cost and durability remain the two major barriers to the widespread commercialization of polymer electrolyte membrane fuel cell (PEMFC)-based power systems, especially for the most impactful but challenging fuel cell electric vehicle (FCEV) application. Commercial FCEVs are now on the road; however, their PEMFC systems do not meet the cost targets established by the U.S. Department of Energy, primarily due to the high platinum loading needed on the cathode to achieve the requisite performance and lifetime. While the activities of a number of commercial Pt-based alloy cathode catalysts exceed the beginning-of-life (BOL) targets, these activities, and the overall cathode performance, degrade via a variety of mechanisms described herein. Degradation is mitigated in current FCEVs by utilizing a cathode catalyst with a lower BOL activity (e.g., much lower transition metal alloy content and larger BOL nanoparticle size), necessitating higher catalyst loadings, and through the utilization of system controls that avoid conditions known to exacerbate degradation processes, such as limiting the fuel cell stack voltage range. The design and development of active and robust materials and eliminating the need for vehicle mitigation strategies would greatly simplify the operating system, allowing for greater transient operation, avoiding large hybridization, and curtailing of fuel cell power. Although system mitigation strategies have provided the near-term pathway for FCEV commercialization, material-specific solutions are required to further reduce costs and improve operability and efficiency. Future material developments should focus on stabilization of the electrode structure and minimization of the catalyst particle susceptibility to dissolution caused by oxide formation and reduction over PEMFC cathode-relevant operating potentials plus minimization of support corrosion. Ex situ accelerated stress tests have provided insight into the processes responsible for material and performance degradation and will continue to provide useful information on the relative stability of materials and benchmarks for robust and stable materials-based solutions not requiring system mitigation strategies to achieve adequate lifetime.

Original languageAmerican English
Pages (from-to)192-200
Number of pages9
JournalCurrent Opinion in Electrochemistry
Volume21
DOIs
StatePublished - Jun 2020

Bibliographical note

Publisher Copyright:
© 2020 Elsevier B.V.

NREL Publication Number

  • NREL/JA-5900-75711

Keywords

  • Carbon support
  • Durability
  • Electrocatalyst
  • Electrode structure
  • Polymer electrolyte membrane fuel cell (PEMFC)
  • PtCo
  • Toyota Mirai

Fingerprint

Dive into the research topics of 'Recent Developments in Catalyst-Related PEM Fuel Cell Durability'. Together they form a unique fingerprint.

Cite this