Abstract
We control surface recombination in the mixed-cation, mixed-halide perovskite, FA0.83Cs0.17Pb(I0.85Br0.15)3, by passivating nonradiative defects with the polymerizable Lewis base (3-aminopropyl)trimethoxysilane (APTMS). We demonstrate average minority carrier lifetimes >4 μs, nearly single exponential monomolecular photoluminescence decays, and high external photoluminescence quantum efficiencies (>20%, corresponding to ~97% of the maximum theoretical quasi-Fermi-level splitting) at low excitation fluence. We confirm both the composition and valence band edge position of the FA0.83Cs0.17Pb(I0.85Br0.15)3 perovskite using multi-institutional, cross-validated, X-ray photoelectron spectroscopy and UV photoelectron spectroscopy measurements. We extend the APTMS surface passivation to higher bandgap double-cation (FA and Cs) compositions (1.7, 1.75, and 1.8 eV) as well as the widely used triple-cation (FA, MA, and Cs) composition. Finally, we demonstrate that the average surface recombination velocity decreases from ~1000 to ~10 cm/s post APTMS passivation for FA0.83Cs0.17Pb(I0.85Br0.15)3. Our results demonstrate that surface-mediated recombination is the primary nonradiative loss pathway in many methylammonium (MA)-free mixed-cation mixed-halide films with a range of different bandgaps, which is a problem observed for a wide range of perovskite active layers and reactive electrical contacts. Our study also provides insights to develop passivating molecules that help reduce surface recombination in MA-free mixed-cation mixed-halide films and indicates that surface passivation and contact engineering will enable near-theoretical device efficiencies with these materials.
Original language | American English |
---|---|
Pages (from-to) | 5035-5044 |
Number of pages | 10 |
Journal | Chemistry of Materials |
Volume | 33 |
Issue number | 13 |
DOIs | |
State | Published - 13 Jul 2021 |
Bibliographical note
Publisher Copyright:©
NREL Publication Number
- NREL/JA-5K00-80631
Keywords
- charge carriers
- efficiency
- energy gap
- films
- perovskite
- photoelectrons
- photoluminescence